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SUMMARY 
 

 Many fisheries management activities result in non-random harvesting of 
individual fish based on their size, age, sex, and timing of reproduction.  

 Where harvesting rates are moderate to high, such selectivity can induce 
evolutionary changes in wild fish populations with negative consequences for 
population persistence, productivity and recovery.  

 This review first broadly investigates the biological (ecological, genetic, 
evolutionary) benefits and risks of conserving small (1SW) and large size (MSW) 
salmon in wild Atlantic salmon populations.  

 The review then focuses on assessing risks associated with the current practice 
of harvesting only (or mainly) 1SW salmon in populations found in Quebec.  

 Where known, current harvesting rates of small size salmon in most Quebec 
populations are not sufficiently high to generate rapid evolutionary changes 
within populations.  

 However, incremental evolutionary changes may be expected in some Quebec 
populations if their current harvest rates (~0.35-0.40) are continued for several 
more generations.  

 The simplest way to avoid (or dramatically reduce) harvest-induced evolutionary 
change (and any risks associated with it) is to simply reduce overall fishing 
mortality to low or moderate levels (~0.10-0.30). 

 The relative benefits of conserving small and large size salmon vary widely 
depending on their relative proportions within a population. 

 In the face of increasing environmental change and pressures on wild Atlantic 
salmon populations, a long-term adaptive management strategy could consider 
(i) improved monitoring of a series of population metrics on select populations 
spanning a wide range of life history variation, and (ii) experimental manipulation 
of harvest regimes across groups of rivers in order to better forecast their full 
risks and benefits from conservation and harvesting perspectives.  
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INTRODUCTION AND REVIEW OBJECTIVES 
 
Sustainable exploitation of wild fish populations remains a long-term societal challenge, 
both from a socio-economic, environmental and policy perspective. Unsustainable 
exploitation is detrimental to Canadian industry and the environment, as evidenced by 
well-known collapses of northwest Atlantic cod and several high value recreational 
fisheries (Hutchings & Myers 1994; Post et al. 2002). Development of sustainable 
fisheries harvesting practices depends heavily on sound scientific principles and 
evidence-based knowledge from a diversity of biological sub-disciplines (e.g. ecology, 
evolution, genetics, behaviour) and levels of biological organization (e.g. population, 
species, community, ecosystem) (Palkovacs 2011; Fraser 2013; Dunlop et al. 2015; 
Kuparinen & Festa-Bianchet 2017). 
 
Within this context, fisheries science is increasingly recognizing that, intentionally or 
inadvertently, many fisheries management activities elicit what is referred to as 
selectivity. I define selectivity here as any non-random harvesting of individuals within 
exploited populations based on their size, age, sex, timing of reproduction, behaviour, or 
life history type (e.g. Kuparinen & Merila 2007; Hutchings & Fraser 2008; Heino et al. 
2015; Tilletson & Quinn 2017). In fishes, most of these characteristics show genetic 
variability among individuals (e.g. Carlson & Seamons 2008; Wood et al. 2015). 
Therefore, whenever fishing is persistently selective, by non-randomly targeting such 
genetically-based characteristics over successive generations, evolutionary change can 
occur in the exploited populations (Kuparinen & Merila 2007; Hutchings & Fraser 2008).  
 
When the rate of selective harvesting is moderate over time, such fisheries-induced 
evolution (hereafter abbreviated FIE) is expected to be incremental over several 
generations; when selective harvesting rates are very high, FIE is expected to be very 
rapid, within one to a few generations (Conover & Munch 2002; Dunlop et al. 2015; 
Uusi-Heikkila et al. 2017). Although it is extremely difficult to conclusively demonstrate 
FIE in natural populations, it is likely common in many fisheries, including for salmonid 
fishes (Ricker 1981; Hard 2004; Edeline et al. 2007; Kendall & Quinn 2012; Heino et al. 
2015). Very importantly, FIE can subsequently elicit ecological change on short time 
scales that affect harvest biomass and population persistence, in some cases 
potentially equal to or exceeding the changes brought on by classical ecological effects 
(Palkovacs 2011; Fraser 2013). Specifically how fisheries selectivity and evolutionary 
change may negatively or positively affect population persistence and productivity 
(directly or indirectly) is only recently being addressed theoretically and empirically 
(Fraser 2013; Heino et al. 2013; Dunlop et al. 2015; Eikeset et al. 2016; Kuparinen & 
Hutchings 2017). 
 
In the case of wild Atlantic salmon (Salmo salar), adults returning to spawn in rivers 
have either spent one winter at sea (1SW, otherwise known as ‘small size’ or ‘grilse’) or 
multiple winters at sea (MSW, comprising 2SW, 3SW and occasionally 4SW or older 
fish, otherwise known as ‘large size’) before they are exposed to exploitation by anglers. 
Due to this major age difference in growth opportunity, MSW fish are much larger in 
body size than 1SW fish (e.g. Hutchings & Jones 1998, Cauchon & April 2018). 
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Populations also vary dramatically in their proportions of 1SW vs. MSW fish (e.g. 
Klemetsen et al. 2003; MFFP 2017). In many regions, Atlantic salmon management 
permits the harvesting of 1SW salmon, whereas most MSW salmon are mandatorily or 
voluntarily released (e.g. DFO 2015; MFFP 2017). Quebec has the highest proportion of 
MSW salmon of any Canadian province, and remains the only place in North America 
where recreational anglers can harvest MSW fish. The number of rivers on which such 
practice is allowed has been reduced over the past decade. For instance, since the 
implementation of the Plan de gestion du saumon 2016-2026 (MFFP 2016), harvesting 
of MSW salmon is allowed only from mid-season (the middle of the spawning run) 
onwards, and only if mid-season counts indicate that the optimal conservation number 
of spawning adults will be reached for that specific river (MFFP 2017). As a result, it is 
common that only 1SW salmon are harvested annually in many of the province’s rivers 
(MFFP 2017). 
 
The potential benefits of conserving large-sized, older fish (e.g. MSW salmon) have 
been heavily discussed in the primarily literature in recent years (e.g. Birkeland & 
Dayton 2005; Gwinn et al. 2013; see below). Nevertheless, annual harvesting of only 
1SW salmon may also generate selectivity. Moreover, in many populations, 1SW 
salmon are disproportionately male (Hutchings & Jones 1998). Hence, continued 
harvesting of only 1SW salmon may ultimately generate evolutionary changes to wild 
Atlantic salmon life history characteristics, especially in males. The degree to which 
such evolutionary changes may be manifest has not been considered, nor have the 
potentially undesirable consequences to Atlantic salmon population persistence or 
harvesting productivity.  
 
This review firstly synthesizes the benefits and risks of harvesting small and large size 
salmon based on existing and emerging literature on FIE and the biology of Atlantic 
salmon. I then use this synthesis to assess risks associated with current harvesting 
regimes in Quebec, with implications for Atlantic salmon management considerations in 
the province. The review’s five main objectives specifically investigate: 
 

 Genetic and ecological benefits of conserving large size (MSW) and small size 
salmon (1SW) 

 Ecological, genetic and evolutionary risks to wild salmon populations from 
harvesting only 1SW salmon (including in relation to population diversity, life 
history evolution, mating system and sex ratios) 

 Conditions under which harvesting only 1SW salmon would be considered a 
negligible risk to wild populations 

 Risk assessment of harvesting only 1SW salmon in Quebec’s wild Atlantic 
salmon populations 

 Management recommendations in relation to wild salmon harvesting and wild 
salmon sizes in Quebec  

 
GENETIC AND ECOLOGICAL BENEFITS OF CONSERVING BOTH LARGE SIZE 
AND SMALL SIZE SALMON 
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The fisheries literature has a long history of reporting the potential negative 
consequences of size-selective harvesting (Law & Grey 1989; Law 2007; Jorgensen et 
al. 2007; Kuparinen & Merila 2007; Heino et al. 1998, 2008, 2015; Hutchings & Fraser 
2008; Laugen et al. 2013; Dunlop et al. 2015; Kuparinen & Festa-Bianchet 2017). 
Fishing commonly targets large-sized individuals with faster growth rates. Increased 
mortality on such individuals from fishing is therefore expected to favour faster life 
histories directly or indirectly, in the form of earlier age-at-maturation, increased 
reproductive investment, or reduced post maturation growth (Heino et al. 2015; 
Kuparinen & Festa-Bianchet 2017). Because genetic variability underlying growth and 
maturation traits can also co-vary with genetic variability underlying other traits, size-
selective harvesting results directly or indirectly in selection on an array of traits, 
including behavior (Uusi-Heikkila et al. 2015), timing of reproduction (Tilletson & Quinn 
2017) and physiology (Philipp et al. 2015). Over successive generations, evolutionary 
changes to the properties of fish populations can be manifest, in turn potentially 
influencing their dynamics and productivity. 
 
Benefits of conserving large size salmon – As a result of the risks associated with 
large fish removal, a wide body of literature has focused on the potential benefits of 
reducing or avoiding harvest of larger sized adults within natural fish populations. 
Larger, older fish have exponentially greater fecundity, can produce more and faster-
growing or higher-quality offspring, be more experienced and successful with spawning, 
may be more effective at cropping down competitor prey species and, in some cases, 
benefit younger individuals that learn migration routes from older individuals (Grey & 
Law 1987; Berkeley et al. 2004a,b; Birkeland & Dayton 2005; Venturelli et al. 2010; 
Gwinn et al. 2013). Hence conserving larger fish maintains individuals with higher 
reproductive potential, which may contribute towards a faster recovery in populations 
that have experienced declines due to environmental or human-induced causes 
(Birkeland & Dayton 2005). Conserving older fish also means that the average 
generation time of a population is greater. This can have positive effects on the stability 
of trophic cascades in aquatic ecosystems (Birkeland & Dayton 2005). It can also result 
in a greater likelihood that genetic diversity is retained at smaller population size, 
through dampened genetic drift and inbreeding over time periods of concern to 
management (Fraser 2013).  
 
Benefits of conserving small size salmon – There are also several benefits to 
ensuring that small-sized adult fish are conserved within populations. In many fishes, 
spawning occurs at different times and locations for individuals of different size/age 
(Wright & Trippel 2009), including within salmonid fishes (Hutchings & Myers 1994; 
Quinn et al. 2016). This can provide a clear buffer against environmental stochasticity 
(Hsieh et al. 2010). Timing of reproductive events in fishes is also thought to reflect local 
evolutionary optima based on selective pressures on adults and their offspring (Tilletson 
& Quinn 2017), and both body size and reproductive timing commonly have moderate to 
high heritability (Carlson & Seamons 2008). Thus, conserving smaller, younger 
individuals is likely to increase overall reproductive output of a population whilst 
extending the spawning season and increasing the likelihood that spawning times are 
matched with local environmental optima and prey availability. Note that the same 
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benefit applies to conserving large, older fish, which tend to spawn either earlier or later 
than smaller-sized fish over a reproductive season depending on the species.  
 
Smaller-sized adults are most often also younger in age; their conservation means that 
a mixture of age classes is present in any one spawning season, which increases the 
retention of genetic diversity in different age cohorts within a population, should there be 
recruitment failure in a given year (Hutchings & Jones 1998; Perrier et al. 2014). 
Sexual-size dimorphism is common in many fishes (Parker 1992; Ritchie et al. 2007; 
Zastavniouk et al. 2017), including some Atlantic salmon populations (Klemetsen et al. 
2003). Therefore, conservation of smaller-sized fish can also reduce the likelihood that 
size-selective fishing of smaller-sized individuals will predominantly target only one sex, 
which poses a number of risks (see below).  
 
ECOLOGICAL, GENETIC AND EVOLUTIONARY RISKS TO WILD SALMON 
POPULATIONS FROM HARVESTING ONLY SMALL SIZE SALMON 
 
Harvesting of only small size salmon is expected to increasingly pose a number of 
potential ecological, genetic and evolutionary risks to wild Atlantic salmon populations 
as the harvest rate within a population increases from moderate to very high.  
 
Ecological risks – Harvesting of only small salmon (and predominantly males) may 
alter mating systems and perhaps sex ratios of spawning salmon (Gross 1991; Fraser 
2013). Nevertheless, there is substantial empirical evidence that Atlantic salmon 
populations are regulated primarily by density-dependent mortality at early life stages 
and by density-independent factors at reproductive stages (Jonsson et al. 1998; Einum 
& Nislow 2005; Imre et al. 2005; Einum et al. 2006). Therefore, harvesting of only small 
size salmon – especially if these are less likely to be females (or females with lower 
fecundity) – is not expected to have major density-dependent consequences for 
population recruitment unless the harvest rate is persistently moderate or higher (~0.30-
0.40 or greater: see below and Dunlop et al. 2015; Kuparinen & Hutchings 2017). 
Additionally, within most Atlantic salmon populations, including in Quebec, males are 
composed of anadromous and nonanadromous, precocial parr (Hutchings & Jones 
1998; Perrier et al. 2014). Precocial male parr are capable of spawning with, and 
fertilizing the eggs of, females even when anadromous males are absent (Hutchings & 
Jones 1998). From the perspective of fertilizing eggs and egg deposition within salmon 
populations, the presence of mature male parr helps to dampen any negative effects of 
reducing the number of returning small salmon.  
 
Genetic and evolutionary risks – Harvesting only small size salmon is a form of 
selectivity. If such selective harvesting is moderate or higher and persists over time, FIE 
may arise, especially given that age-at-maturity and related traits (e.g. propensity to 
migrate or migrate to sea in males) have a significant genetic component (Carlson & 
Seamons 2008; Barson et al. 2015). Life history changes generated from FIE may 
subsequently affect abundance and harvestable productivity of an Atlantic salmon 
population in undesirable ways for management.  
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Shifts in life history expression – As harvesting of small-size salmon in Quebec 
specifically targets males disproportionately, a resulting consequence might be reduced 
fishery yields (biomass and catchable numbers of individuals) through alterations to 
alternative life history tactics. Expression of anadromous and nonanadromous life 
histories in salmonids is associated with a threshold body size and influenced by both 
genetic and plastic effects (Theriault et al. 2008; Piche et al. 2008; Yates et al. 2015). 
The much larger migratory anadromous individuals are of primary interest for fisheries 
harvesting whereas the nonanadromous individuals are often too small to harvest at all. 
Intense fishing of males will directly select against anadromous individuals, potentially 
favouring a shift towards an increased probability of expressing the nonanadromous life 
history; the reduced population size of anadromous individuals also decreases mating 
competition among nonanadromous individuals where the two forms exhibit alterative 
mating tactics (Gross 1991; Fraser 2013).  
 
Population-specific sensitivities to life history changes induced by harvesting – Atlantic 
salmon populations probably vary in the likelihood that harvesting will induce an 
increase in the frequency of precocial male maturation. From a fishery-perspective, the 
most sensitive populations might be those with (i) no males maturing as MSW fish (only 
as 1SW fish), (ii) a higher proportion of anadromous vs. precocial maturation and/or (iii) 
a greater mean fitness difference between the precocial and anadromous life history at 
any point in time. These are all cases where selection from harvesting 1SW males only 
might be expected to be strongest against an anadromous life history, and where the 
cost of reducing the anadromous component of male life histories is most impactful for 
fishery yields. Unfortunately, good data for (ii) and (iii) are unavailable for most wild 
populations (e.g. see Hutchings & Jones 1998). Reductions in fishery yield resulting 
from an increased frequency of precocial male maturation would, again, be expected 
more under high harvesting rates over multiple generations. 
 
Altered phenology from harvesting – Given the aforementioned links between body size 
and either reproductive timing within populations or spawning area use (and the often 
high heritability of body size/phenology traits), size-selective harvesting of smaller size 
individuals may also contract the reproductive season in Atlantic salmon. This is 
because it would reduce the abundance of smaller adults with either particularly early or 
later (in the case of many salmonids) spawn timing (Hixon et al. 2014; Tilletson & Quinn 
2017). Thus, harvesting of only smaller, younger individuals – if sufficiently intense – 
might be expected to decrease overall reproductive output of a population, contract the 
spawning season, and decrease the likelihood that all suitable spawning times and 
areas were used by returning adults. 
 
Loss of genetic diversity – Potential genetically-based shifts in male size-at-maturation 
and overall reproductive timing induced by FIE discussed above are associated with 
quantitative traits in Atlantic salmon. Loss of genetic diversity per se (e.g. neutral 
genetic diversity not under current selection) as a risk from harvesting only small size 
salmon seems less likely to occur. Namely, precocial males in freshwater will contribute 
to the annual generation of new cohorts within the population (e.g. see Perrier et al. 
2014). The only exception may be in very small populations (e.g. <100-200 adults) 
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because the loss of genetic diversity from stochastic events is more likely in such 
populations (Palstra & Ruzzante 2008), though presumably such populations are 
already largely protected from high harvesting rates.  
 
CONDITIONS UNDER WHICH HARVESTING ONLY SMALL SIZE SALMON WOULD 
BE CONSIDERED A NEGLIGIBLE RISK TO WILD POPULATIONS; OTHER 
SUSTAINABLE HARVESTING CONSIDERATIONS 
 
Negligible risk is defined here as an impact on the productivity of a population which can 
be mitigated by a wild population within one generation once the impact ceases. 
Undoubtedly, harvesting of small salmon at high rates over successive generations 
within largely 1SW-based populations would render wild population recovery difficult 
within a generation. Persistent, intense harvesting of small salmon over multiple 
generations would also be expected to result in FIE and possible changes to the 
productivity of wild populations; again, such FIE would be more severe at higher 
harvesting rates and/or when the selectivity in harvesting is more pronounced (e.g. by 
disproportionately harvesting only specific traits or components of the populations) 
(Kuparinen & Merila 2007; Hutchings & Fraser 2008; Audzijonyte et al. 2013; Kuparinen 
& Festa-Bianchet 2017). Currently, however, there is little specific empirical information 
to guide management efforts regarding the exact conditions wherein harvesting only 
1SW salmon poses a negligible risk to a wild Atlantic salmon population (aside from 
populations with a very small proportion of 1SW spawners where risk is inherently low). 
Given this, below I draw inferences from modelling studies, focus on ways in which risks 
can be avoided or reduced in relation to harvesting itself, and then discuss some 
additional uncertainties not accounted for in existing modelling.  
 
Avoiding fisheries-induced evolution by reducing harvesting rate – The simplest 
way to ensure that harvesting of small size salmon is a negligible risk for wild 
populations is to simply avoid (or dramatically reduce) FIE by reducing overall fishing 
mortality to low or moderate levels (Law 2007; Hutchings & Fraser 2008; Hutchings 
2009; Kuparinen & Festa-Bianchet 2017). For example, at low harvest levels (~0.10-
0.30), existing modelling simulations suggest that any incrementally generated FIE over 
a 100 year period had a minimal effect on population growth rate for different fish 
species (cod, perch, whitefish; Dunlop et al. 2015). Moderate to high levels of 
harvesting induced more significant and rapid impacts on population growth rate 
(Dunlop et al. 2015). These simulations may not adequately typify exactly what would 
be expected in Atlantic salmon given their different life history characteristics and 
genetic basis of traits (see below). Nor do they account for other potentially undesirable 
aspects for harvesters (e.g. changes in average size of harvested fish). Yet even more 
recent modeling efforts that accounted for Atlantic salmon genetic intricacies did not 
detect major FIE at fishing mortalities of ~0.35-0.45 until after 40-50 years of simulated 
harvesting (approximately 12-15 generations for the species) (see Figures 2 and 4 in 
Kuparinen & Hutchings 2017). In sum, results of existing modelling simulations suggest 
that, provided low to moderate levels of harvesting are practiced, harvesting of only 
small salmon likely poses a negligible risk to wild Atlantic salmon population 
productivity, unless continued for a considerable number of harvesting generations.  
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Balanced harvesting: a more sustainable way to harvest? – Inherently, the risks 
and uncertainties posed from harvesting either large or small size salmon raise a 
fundamental question: what is the optimal way to harvest wild Atlantic salmon 
populations? It is not possible to harvest salmon randomly according to their size, age, 
timing of migration, behaviour, etc. in a way that would entirely remove any selectivity. 
‘Balanced’ harvesting is one alternative harvesting strategy to common, size-based 
management practices.  
 
Advantages of balanced harvesting – Balanced harvesting is intended to distribute 
fishing mortality across the widest range of sizes in a given ecosystem or population, in 
proportion to their natural productivity; by doing so, it has the potential advantage of 
more effectively mitigating the ecological and evolutionary effects of fishing while 
supporting sustainable fisheries (Garcia et al. 2012, 2016), potentially even more 
productive ones (Law et al. 2014). Indeed, maintenance of fish size spectra under 
intense and diverse harvesting regimes which cause high mortality but low selectivity is 
cited as support for balanced harvesting (Garcia et al. 2012).  
 
Uncertainties/disadvantages of balanced harvesting – Unfortunately, the relative 
efficacy of balanced harvesting in retaining population-productivity relationships 
compared to size-selective harvesting has not been evaluated under controlled 
experimental conditions using natural populations of any fish species. Balanced 
harvesting is also not without potential disadvantages, which should be factored in if 
adopted as an exploratory approach for sustainable harvesting. First, balancing 
selection does not completely rule out selectivity. Heino et al (2015) point out that a 
uniform rise to fishing mortality across all body sizes still will cause selective pressures 
on many traits in many situations. This is because the advantages of becoming older 
become less important in life history trade-offs, leading to faster life history evolution 
(e.g. mature earlier, enhance current reproduction). Second, critics of balanced 
harvesting point to a number of potentially impractical limitations of the approach for 
implementation. These include the requirement of harvesting all sizes of fish, difficulties 
in obtaining a truly balanced harvesting distribution even if a population’s size 
distribution is well-known (and temporally unchanging), and effectively regulating a 
balanced harvest distribution (Froese et al. 2016). 
 
Other uncertainties – Modelling exercises that have investigated conditions wherein 
FIE is manifested and expected to influence population growth rate may not adequately 
portray population responses in the wild. Therefore, several additional uncertainties 
should be considered for any harvest regime that imposes selectivity. The first is that 
the extent of FIE also depends on the genetic architecture underlying traits. Most traits 
under selection will be polygenic in nature, which should shift life histories in a 
directional fashion (e.g. smaller size and earlier age at maturity when size selective 
harvesting targets large-sized fish). However, age at maturity in Atlantic salmon was 
recently determined to be largely under genetic control at a single locus (Barson et al. 
2015). This trait characteristic recently modeled to result in largely divergent and 
disruptive selective pressures in Atlantic salmon (Kuparinen & Hutchings 2017), 
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implying that the evolutionary outcome of a specific harvesting strategy is likely to be 
very uncertain. 
  
The first uncertainty is compounded by a second one: the difficulty of understanding 
indirect effects of selectivity on correlated traits that influence each sex. For instance, it 
has been suggested that male-specific selectivity (which typifies small size Atlantic 
salmon harvesting in many rivers) indirectly affects adaptive female traits and potentially 
affect population dynamics (Kuparinen & Festa-Bianchet 2017). Nevertheless, evidence 
for this is, at present, slim for any organism (Pigeon et al. 2017). 
 
A third chief uncertainty in the interpretation of phenotypic trends in harvested 
populations is that the plastic changes to phenotypes and vital rates expected from 
harvest-based reductions in population density can be similar to changes induced by 
harvest-selection (Kuparinen & Festa-Bianchet 2017); mere detection of life history 
trends within Atlantic salmon populations may not be adequate for assessing the full 
existence of FIE (Kuparinen & Hutchings 2017). Similarly, in many modelling simulation 
exercises, trait heritabilities are assumed to be constant within populations over 
harvesting intervals, yet these vary over time within fish populations and are often highly 
variable within trait classes (Carlson & Seamons 2008; Heino et al. 2015).  
 
In summary, we are still a long way off from a complete understanding of what the 
direction of fisheries-induced selection imposed by a specific type of harvesting/gear will 
be for a given trait, how strong the selection will be, and how quickly FIE might ensue 
(Audzijonyte et al. 2013; Kuparinen & Festa-Bianchet 2017). Evolutionary and 
ecological variables (density, age structure, recruitment, population growth) can interact 
in complex ways within populations and across life stages, vary temporally and affect 
different fitness components (Dunlop et al. 2015; Eikeset et al. 2013, 2016; Kuparinen & 
Festa-Bianchet 2017; Pigeon et al. 2017). While the rate of FIE has been observed to 
be low in some modelling exercises (e.g. 0.1-0.6%/year Anderson & Brander 2009), 
such low rates are significant if they persist for decades (Heino et al. 2015). Hence, 
many authors recommend applying the precautionary principle and minimizing FIE 
(Eikeset et al. 2013; Laugen et al. 2013; Dunlop et al. 2015). 
 
RISK ASSESSMENT OF HARVESTING ONLY SMALL SIZE SALMON 
SPECIFICALLY IN QUEBEC’S WILD ATLANTIC SALMON POPULATIONS 
 
The province of Quebec contains more than 100 wild Atlantic salmon populations, the 
vast majority of which are harvested annually when adults return to rivers to spawn 
(MFFP 2017; Figure 1). Since approximately 2002, the mandatory release of most or all 
MSW salmon has been implemented on many rivers (MFFP 2017). Harvesting of MSW 
salmon is only permitted mid-season onwards if the optimal conservation limit in a 
specific river is achieved (MFFP 2016). Most harvested salmon in the province are 
therefore 1SW salmon (MFFP 2017), and most of these salmon are males (O’Connell et 
al. 2016, Cauchon & April 2018). This time period constitutes approximately 3-4 
generations for the species in which the small size-selective harvesting practice has 
been implemented.  
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Variability in life history and harvest rates among Quebec salmon populations – 
The life history of Atlantic salmon populations in Quebec is highly variable (Hutchings & 
Jones 1998; MFFP 2017), as is the harvesting rate between populations (MFFP 2017). 
This variability is tremendously important to factor in when determining potential risks 
associated with harvesting only small size salmon in Quebec’s rivers, or alternative 
harvesting regimes. Five specific populations exemplify this variability (locations in 
Figure 1). For example, virtually all or most adult spawners in some populations are 
large size salmon (e.g. Moisie, Saint-Jean (Gaspesie)). Others have more intermediate 
proportions of both large and small size salmon (Matane, Trinite), while small size 
salmon dominate spawning runs in Du Vieux-Fort (Table 1). Similarly, mean harvesting 
rates of small size salmon vary substantially among these populations, from as low 
~0.05 in the Moisie and Du Vieux-Fort since 2002, to ~0.20 in the Trinite, and to ~0.38-
0.40 in the Saint-Jean and Matane (Table 1; extracted from MFFP 2017). I have 
included an additional five populations in Table 1 (Grande Riviere, Sainte Anne, Cap 
Chat, Sainte Marguerite, Jupiter; geographic locations in Figure 1). These additional five 
populations span a similar proportion of 1SW:MSW life history components as the 
Matane and Saint-Jean; along with the Matane and Saint-Jean, these are the most 
heavily exploited salmon populations in Quebec of the 37 populations with long-term 
monitoring data available (assessed from MFFP 2017). Hence, they provide the best 
insight into whether current harvesting regimes pose a significant, negative risk to the 
life history, persistence and/or productivity of Quebec’s wild Atlantic salmon populations. 
 
Are current harvest rates in Quebec salmon populations generating FIE of 
conservation concern? When considering data since 2002, harvesting rates in the 
Moisie and Du Vieux-Fort, and probably the Saint-Jean and Trinite, have been 
sufficiently low for any FIE generated from harvesting only small-size salmon to be a 
conservation concern. Furthermore, in the Moisie and Saint-Jean, the proportion of 
males that comprise 1SW vs. MSW fish is very small or small (~0.05-0.20). At such a 
low proportion, any selection that disfavors 1SW males with even a ~0.40 harvesting 
rate may not generate large-scale changes in the life history and yield of small size 
salmon, unless continued on for many generations, and most likely only the male 
component of the small size salmon would be affected. 
 
In the Matane and remaining five rivers (Grande Riviere, Sainte-Anne, Cap-Chat and 
Saint-Marguerite; Jupiter), small size salmon comprise a considerable proportion of the 
annual spawning run (~0.40-0.55) and are also exploited at a mean annual rate of ~0.40 
(in some years ~0.60-0.70). Yet interestingly, there is only an indication in 2 of 6 rivers 
(Sainte-Anne, Cap-Chat) that the ratio of small vs. large salmon is declining since 2002 
(15 years or 3-4 generations), which might be expected if disproportionate harvesting of 
small size salmon favors a shift towards an older, large size salmon life history; in the 
Sainte-Anne, salmon abundance has actually increased since 2002 and it is stable in 
the Cap-Chat (assessed from MFFP 2017). Longer timespans (>20-33 years) in the 
other 4 of 6 rivers reveal general stability in adult abundance (Grande Riviere, Matane) 
or continuous declines (Saint-Marguerite, Jupiter). Other explanations than harvesting 
of small size salmon per se could explain population declines; if existing rates of small 
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size salmon harvesting have affected population abundance or productivity in the past 
15 years, they may have only done so in 2 of 6 of the most candidate populations.  
 
Overall, these numbers are encouraging from a management perspective as they 
suggest a minimal overall impact of harvesting only small size salmon in most Quebec 
rivers with the highest current harvesting rates (mean ~0.35-0.40). Nevertheless, I 
reiterate two previous points drawn from recent modelling simulations (Dunlop et al. 
2015; Kuparinen & Hutchings 2017): (i) the highest current harvest rates in some 
Quebec populations may elicit incremental FIE if continued for several more 
generations, and (ii) a lack of life history changes within Atlantic salmon populations 
may not detect the full existence of FIE. As discussed above, for example, a major 
uncertainty is how potential shifts in precocial male maturation in freshwater affect 
future Atlantic salmon harvest yield, and by how much. 
 
Simulating harvesting rates versus egg deposition and harvest yield – Another 
way to approach risk to Quebec salmon populations is to assume no FIE occurs and 
simulate the potential consequences to egg deposition and harvest yield of harvesting 
different proportions of 1SW and MSW salmon in populations with varying life histories 
(i.e. different proportions of 1SW and MSW fish). This is cursorily summarized for four of 
five main focal populations in Table 2 (excluding Moisie, see below), assuming that 
salmon and large salmon weigh 2kg and 5kg, and produce 2025 eggs vs. 1745 eggs 
per kg, respectively, along with exploitation rates of 0%, 25%, 50%, and 75%. 
 
Broadly speaking, with simulated, increased harvest rates of only 1SW salmon, egg 
deposition unsurprisingly decreases as the proportion of 1SW fish in the population 
increases, but this drop is only significant in populations that have very high proportions 
of 1SW fish (≥0.90) (Table 2). Adopting a 3:1 ratio of 1SW:MSW fish increases the 
harvest biomass relative to harvesting 1SW fish only, but only in populations with higher 
proportions of MSW fish (≥0.60) (Table 2). Adopting a harvesting approach where 1SW 
and MSW fish are harvested in the same proportion as they are represented in the adult 
return within a given population also increases the harvest biomass relative to 
harvesting 1SW fish only. However, these benefits are only obtained when the 
proportion of MSW fish is higher, and they come with the most cost in relation to 
reduced egg deposition (Table 2). The two salient points for management are as 
follows. First, optimal harvesting proportions of 1SW vs. MSW fish in relation to overall 
harvest biomass and egg deposition are highly population dependent; these metrics are 
not necessarily highest when only small salmon are harvested. Second, in many 
instances, egg deposition can be maintained without that much cost (reduction) to egg 
deposition if only 1SW fish or mainly 1SW fish are harvested. These general trends can 
be broken down further per population to relate costs and benefits of harvest relative to 
egg deposition. 
 

In the Moisie, it is not possible to adopt a harvesting strategy of 1SW fish only if the 
harvest rate is ≤ 0.05 because there are so few small salmon in the population (Table 
1). 
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In the Saint-Jean, harvesting only 1SW fish generates a harvest biomass that is 45% of 
the harvest based on harvesting the same proportion of 1SW and MSW fish as in the 
adult returns, without having virtually any impact on egg deposition (Table 2). 
Harvesting small amounts of MSW fish in this population can also improve yield without 
reducing egg deposition that much (Table 2). Overall, there are benefits to harvesting 
only (or mainly) 1SW fish in the Saint-John population. 
 

In the Matane and Trinite, the benefits of harvesting only 1SW fish become even 
clearer, with yields of 53-73% relative to scenarios including harvesting of MSW fish, 
with little effect on overall egg deposition. Very low harvest rates of MSW fish in these 
populations could be permitted if increasing harvest biomass is really important for 
management (Table 2). 
 

In Du Vieux Fort, there is little impact from harvesting 1SW fish only, in terms of both 
maintaining harvest biomass and egg deposition. Conversely, harvesting of any MSW 
fish does not appreciably increase harvest biomass and only substantially reduces egg 
deposition, especially at increased harvest rates (Table 2). 

 

How many males are required to fertilize total egg deposition and maintain 
genetic diversity in harvested Atlantic salmon populations? Another aspect of risk 
for management to consider is – again, in the absence of FIE – how many anadromous 
males would be required in a given population to (i) fertilize the total number of eggs 
deposited in that population and (ii) maintain the genetic diversity within the population? 

 

The answer to the first question is hypothetically zero: in some Atlantic salmon 
populations, a high percentage of males mature as precocial parr, and such parr are 
capable of spawning with and fertilizing a large percentage of female eggs within a 
population (e.g. Myers et al. 1984; Hutchings & Jones 1998; Taggart et al. 2001). 
However, our knowledge of male parr biology (including in Quebec) is far from complete 
to formulate prescriptive numbers and robust recommendations at the present time for a 
given salmon population. For example, while parr can have high levels of reproductive 
success relative to anadromous males, their study has been limited to single, small river 
systems whose spatial dynamics of spawning probably do not apply to larger rivers (e.g. 
Taggart et al. 2001; Weir et al. 2010). Little is known on the extent of movement of 
individual mature parr, their spawning lifetimes, or how quickly they can replenish 
sperm, although their large numbers and spatial distribution tend to suggest that a 
propensity to find and fertilize females in different stream areas (e.g. Taggart et al. 
2001; Weir et al. 2010).  

 

The question of how many anadromous males are required in a given population to 
retain that population’s genetic diversity is also difficult to answer and is hypothetically 
zero, for the same reasons as above. Namely, precocial parr help to maintain effective 
population size through their fertilization of female eggs; their large numbers in many 
streams contain much of the standing, neutral genetic diversity within a population 
(Taggart et al. 2001), even when anadromous males are largely absent (Johnstone et 
al. 2013). Nevertheless, the presence of at least some anadromous males is probably 
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important for maintaining competitive and adaptive rigor within the vast majority of 
Atlantic salmon populations and has other biological benefits (e.g. gene flow between 
anadromous populations). 
   

CONCLUSIONS AND MANAGEMENT RECOMMENDATIONS IN RELATION TO 

WILD SALMON HARVESTING AND WILD SALMON SIZES IN QUEBEC 

 

 Existing primary literature suggests that, where existing harvesting proportions of 
wild Atlantic salmon are known, these are not sufficiently high to generate rapid 
FIE within most of Quebec’s rivers (since 2002). 
 

 Provided that low to moderate levels of harvesting are practiced (~0.10-0.30), 
harvesting of only small salmon likely poses a negligible risk to wild Atlantic 
salmon population life history characteristics or productivity.  

 

 Nevertheless, where currently known, harvest rates of small size salmon may be 
sufficiently high in some Quebec populations (~0.35-0.40) to incrementally elicit 
FIE if continued for several more generations, according to recent modelling 
simulations (Dunlop et al. 2015; Kuparinen & Hutchings 2017). 

 

 The simplest way to avoid (or dramatically reduce) FIE and any risks associated 
with FIE is to simply reduce overall fishing mortality to low or moderate levels 
(Law 2007; Hutchings & Fraser 2008; Hutchings 2009; Kuparinen & Festa-
Bianchet 2017). Management strategies aimed at reducing overexploitation will 
also reduce FIE. 

 

 There are benefits to conserving both small and large size salmon, among them 
being to buffer wild Atlantic salmon populations from environmental stochasticity. 

 

 In general, however, large and small salmon are not equal in a 
fitness/evolutionary sense for each size of fish. Size-selective harvesting of large 
size salmon has more negative consequences for population recruitment and 
productivity than selective harvesting of small size salmon, because the 
advantages of becoming older (and larger) become less important in life history 
trade-offs. Even when the harvesting rate of each size of salmon is equal, it still 
becomes less valuable for a salmon to postpone reproduction because any gain 
from doing so (enhanced growth, survival, future reproduction) is lost when an 
MSW fish is harvested (see Heino et al. 2015). This is important for management 
to consider even in populations with high MSW:1SW ratios, given the global 
declines in MSW Atlantic salmon (ICES 2015). 
 

 Strongly male-biased harvesting of 1SW fish is a form of fisheries-selectivity 
within harvested Atlantic salmon populations. Populations likely vary in their 
sensitivity to shifts towards greater precocial male maturation induced by 
harvesting. At present, the consequences of such shifts for the productivity of 
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salmon populations are uncertain but are expected to manifest only if moderate 
or higher harvest rates persist over time (~0.30-0.40 or greater).  
 

 The relative benefits of conserving each size of salmon vary widely depending on 
their relative proportion within a population. This makes it difficult to recommend 
simple, prescriptive harvesting strategies across populations.  
 

 A general approach to monitoring wild Atlantic salmon populations in Quebec 
given their extensive life history variability would be to treat harvesting strategies 
for ‘groups’ of populations in relation to similar 1SW:MSW components, 
population annual harvesting rates, population sizes, population sizes of 
precocial male parr, etc. to better represent population nuances (while 
accounting for genetic population structure). Redundancy analyses would 
provide one statistical means to best partition populations into groups based on 
variation in their characteristics. 
 

 Harvesting rates within Quebec populations are known with reasonable 
confidence for 37 of more than 100 rivers in the province. Molecular DNA and 
eDNA approaches provide promising avenues for inferring and monitoring adult 
salmon abundance where this is not feasible to carry out using traditional 
approaches (Lacousiere-Roussel et al. 2016; Yates et al. 2017). Any such 
monitoring endeavor, however, must carefully consider the strengths and 
limitations of such approaches in relation to Atlantic salmon biology (Ferchaud et 
al. 2016; Yates et al. 2017). 

 

 Because a lack of life history changes within Atlantic salmon populations may not 
detect the full existence of FIE (due to intricacies in the genetic basis of traits 
underlying functional traits in salmon), annual collection of a number of basic 
data on harvested fish and spawning runs is recommended where feasible. 
 

 These monitoring data would include information on harvested/non-harvested 
fish size, sex, capture date, run-timing, as well as sex ratio and MSW:1SW ratio. 
 

 The demographic contribution of precocial male parr to salmon recruitment 
remains a major research gap in Atlantic salmon. Focused studies on male parr 
(e.g. their numbers, patterns of reproductive success) where numbers and 
harvesting rates of anadromous males are known could help to inform the 
question of how many anadromous males are required to fertilize female eggs 
whilst maintaining genetic diversity within a given population.  
 

 A select group of populations representing a wide range of life history 
characteristics could be prioritized for monitoring data collection to (i) detect 
potential incremental changes over time that may be warning signals of 
undesirable FIE (in fish size, phenology, and by sex etc.), and to (ii) facilitate 
future, province-wide decision-making on harvesting policies. Some of these data 
are already being collected on a few select rivers. 
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 Continued harvesting coupled with increasing climate change may result in new 
and rapidly changing harvest rates such that these become much higher than 
current rates. If certain Atlantic salmon populations experience continued 
declines, the likelihood of generating FIE will likely increase, with associated 
impacts on population productivity and persistence.  
 

 For improved, future preparedness on how to balance conservation needs vs. 
harvesting interests, one adaptive management approach would be to 
experiment with different harvesting regimes on multiple rivers as ‘treatments’ in 
the next decade or two, with rigorous, ongoing monitoring of the metrics listed 
above. A ‘treatment’ could involve 4 to 5 rivers with the same harvesting regime 
(small salmon only, mix of small and large salmon, balanced harvesting etc.).  
 

 By manipulating harvesting regimes in a controlled, replicated way across 
selected populations, the full benefits/risks of different harvesting regimes for all 
Quebec rivers could be determined before such information was needed in a 
given case. 
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Figure 1. Map of Atlantic salmon rivers in Quebec from MFFP 2017; orange circles below specific rivers denote the focal rivers 
included in the section “Risk assessment of harvesting only small size salmon specifically in Quebec’s wild Atlantic salmon 
populations”.  
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Table 1. The varying proportions of small and large size wild Atlantic salmon in selected Quebec Rivers. Data were extracted or 
summarized from MFFP 2017, or were provided by J. April, MFFP.  Notes on harvesting refer to rates for 1SW salmon only, or 1SW 
and MSW salmon combined (‘all’). 

 

River Notes on average harvesting rate of small salmon and of 
the total spawning run (ranges since 2002)  

 Prop. 
MSW 

Prop. of 
MSW as 

males 

Prop. of 
MSW as 
females 

Prop. of 
1SW as 

males  

Prop. of 
1SW fish as 

females 

Ratio of 
1SW:MSW 

males 

Moisie 1SW: Likely very low 
All: Likely <0.10 contemporarily; 0.09-0.33 historically 

0.95 
 

0.45 0.55 0.99 0.01 0.0495 

 
Saint-Jean 
(Gaspésie) 

 
1SW: 0.38 (0.20-0.60) 
All: 0.143 (0.06-0.27), vast majority harvested fish were 
1SW - Usually 2-3X MSW than 1SW in spawning run, 
fluctuates widely. 

 
0.80 

 

 
0.35 

 
0.65 

 
0.99 

 
0.01 

 
0.198 

 
Matane 

 
1SW: 0.393 (0.27-0.61) 
All: 0.321(0.21-0.39) 
mix of 1SW and MSW, more 1SW harvested 

 
0.60 

 

 
0.30 

 
0.70 

 
0.85 

 
0.15 

 
0.34 

 
De la Trinité 

 
1SW: 0.187 (0.10-0.24) 
All: 0.125 (0.05-0.17), all 1SW (but 1SW + MSW present) 

 
0.40 

 

 
0.10 

 
0.90 

 
0.80 

 
0.20 

 
0.48 

 
Du Vieux-Fort 

 
1SW: 0.046 (0.2-0.12) 
All: 0.04 (0.02-0.1), mainly 1SW harvested 
vast majority of spawners are 1SW 

 
0.10 

 
0.10 

 
0.90 

 
0.5 

 
0.50 

 
0.45 

 
Grande Riviere 

 
1SW: 0.438 (0.21-0.68); All: 0.185 (0.08-0.38); ~0.45-0.65 of spawners are MSW 
1SW: 0.405 (0.25-0.59); All: 0.173 (0.13-0.26); ~0.50-0.70 of spawners are MSW 
1SW: 0.440 (0.25-0.77); All: 0.172 (0.10-0.30); ~0.50-0.75 of spawners are MSW 
1SW: 0.364 (0.26-0.46); All: 0.099 (0.05-0.16); ~0.55-0.80 of spawners are MSW  
1SW: 0.387 (0.29-0.50); All: 0.229 (0.13-0.29); ~0.30-0.45 of spawners are MSW 
 

Sainte-Anne 
Cap-Chat 
Sainte Marguerite 
Jupiter 
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Table 2. Simulated harvest biomass and egg deposition under different harvesting types and harvesting rates, across select Quebec 
Atlantic salmon populations varying in the proportion of 1SW and MSW fish. For each population, harvesting types listed are for (i) 
1SW fish only, (ii) the same proportion of 1SW versus MSW fish as their proportion in the adult returns for that population, and (iii) a 
3:1 ratio of 1SW versus MSW fish. Harvest biomass is reported as total harvest (kg) and as the proportion of the total biomass of the 
population. Also included is the proportion of harvest biomass for 1SW only versus the other two harvest types. The proportion of egg 
deposition for each harvest type and rate listed is relative to the total egg deposition of the population under no harvest. For the 
simulations, small and large salmon were assumed to weigh 2kg and 5kg, respectively, and produce 2025 eggs vs. 1745 eggs per 
kg, respectively. Mean census population size of anadromous adults (33 year average except for Du Vieux Fort (7 years)) used to 
calculate harvest biomass: 1227 (Saint-Jean), 2700 (Matane), 1056 (Trinite), 1437 (Du Vieux Fort). The Moisie population is not 
included because the low numbers of 1SW fish in this population mean it does not reach any harvest quotas for the harvesting rates 
simulated (see text for further details).  
 

Population Harvest type 
(1SW:MSW) 

Harvest 
rate 

Harvest 
biomass 
(kg) 

Prop. Of total 
biomass (kg) 
in population 

Prop. Biomass for 
1SW only vs. 
specified harvest type 

Prop. Egg 
deposition relative 
to no harvest 

Saint-Jean 1SW only 10% 245 0.05  0.999 
Saint-Jean 1SW only 25% 614 0.11  0.998 
Saint-Jean 1SW only 35% 859 0.16  0.997 
Saint-Jean 1SW only 50% 1227 0.23  0.996 
Saint-Jean 0.20:0.80 10% 540 0.10 0.45 0.900 
Saint-Jean 0.20:0.80 25% 1350 0.25 0.45 0.750 
Saint-Jean 0.20:0.80 35% 2699 0.35 0.45 0.650 
Saint-Jean 0.20:0.80 50% 4049 0.50 0.45 0.500 
Saint-Jean 0.75:0.25 10% 337 0.06 0.73 0.968 
Saint-Jean 0.75:0.25 25% 844 0.16 0.73 0.920 
Saint-Jean 0.75:0.25 35% 1181 0.22 0.73 0.888 
Saint-Jean 0.75:0.25 50% 1687 0.31 0.73 0.841 
       
Matane 1SW only 10% 540 0.15  0.980 
Matane 1SW only 25% 1350 0.13  0.960 
Matane 1SW only 35% 1890 0.18  0.950 
Matane 1SW only 50% 2700 0.26  0.920 
Matane 0.40:0.60 10% 1026 0.10 0.53 0.900 
Matane 0.40:0.60 25% 2565 0.25 0.53 0.750 
Matane 0.40:0.60 35% 3591 0.35 0.53 0.650 
Matane 0.40:0.60 50% 5130 0.50 0.53 0.500 
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Table 2 continued.      

Matane 0.75:0.25 10% 743 0.07 0.73 0.950 
Matane 0.75:0.25 25% 1856 0.18 0.73 0.870 
Matane 0.75:0.25 35% 2799 0.25 0.73 0.820 
Matane 0.75:0.25 50% 3713 0.36 0.73 0.750 
       

Population Harvest type 
(1SW:MSW) 

Harvest 
rate 

Harvest 
biomass 
(kg) 

Prop. Of total 
biomass (kg) 
in population 

Prop. Biomass for 
1SW only vs. 
specified harvest type 

Prop. Egg 
deposition relative 
to no harvest 

       
Trinite 1SW only 10% 211 0.06  0.980 
Trinite 1SW only 25% 528 0.16  0.940 
Trinite 1SW only 35% 739 0.22  0.920 
Trinite 1SW only 50% 1056 0.31  0.890 
Trinite 0.60:0.40 10% 338 0.10 0.63 0.900 
Trinite 0.60:0.40 25% 845 0.25 0.63 0.750 
Trinite 0.60:0.40 35% 1188 0.35 0.63 0.650 
Trinite 0.60:0.40 50% 1690 0.50 0.63 0.500 
Trinite 0.75:0.25 10% 290 0.09 0.73 0.930 
Trinite 0.75:0.25 25% 726 0.21 0.73 0.820 
Trinite 0.75:0.25 35% 1016 0.30 0.73 0.750 
Trinite 0.75:0.25 50% 1452 0.43 0.73 0.650 
       
Du Vieux Fort 1SW only 10% 287 0.09  0.920 
Du Vieux Fort 1SW only 25% 719 0.22  0.810 
Du Vieux Fort 1SW only 35% 1006 0.30  0.730 
Du Vieux Fort 1SW only 50% 1437 0.43  0.610 
Du Vieux Fort 0.90:0.10 10% 331  0.87 0.900 
Du Vieux Fort 0.90:0.10 25% 826  0.87 0.750 
Du Vieux Fort 0.90:0.10 35% 1157  0.87 0.650 
Du Vieux Fort 0.90:0.10 50% 1653  0.87 0.500 
Du Vieux Fort 0.75:0.25 10% 395 0.12 0.73 0.870 
Du Vieux Fort 0.75:0.25 25% 988 0.30 0.73 0.670 
Du Vieux Fort 0.75:0.25 35% 1383 0.42 0.73 0.530 
Du Vieux Fort 0.75:0.25 50% 1976 0.60 0.73 0.330 
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